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LETTER TO THE EDITOR 

A fractal model for band structures just above percolation 
threshold 
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College of Engineering, Shizuoka University, Hamamatsu 432, Japan 

Received 31 May 1985, in final form 24 June 1985 

Abstract. A two-dimensional regular-fractal model is proposed to imitate the geometric 
texture of percolating networks just above percolation threshold. The system is self-similar 
(fractal) on length scales smaller than the connectedness length, but becomes homogeneous 
(non-fractal) square lattice on larger length scales. The scaling of vibrational density of 
states and band structures are studied by using exact renormalisation group methods. It 
is shown that an infinite number of narrow bands appear to have self-similar structures of 
typical Cantor sets at low frequency. 

Recently, there has been increasing interest in exact mathematical fractals (Mandelbrot 
1982, Vicsek 1983, Given and Mandelbrot 1983, Ben-Avraham and Havlin 1983). The 
main reason is that solution of many important equations of physics on these lattices 
adds to our understanding of the geometric and topological properties that are relevant 
to modelling the corresponding physical processes. The percolating infinite cluster is 
one of the most intensively studied random fractals (Deutscher et a1 1983, Stauffer 
1979, Stanley and Coniglio 1983, Kirkpatrick 1979, Kapitulnik and Deutscher 1984). 
As the concentration p approaches p c ,  the pair connectedness length diverges, 6 -  
( p  - p C ) - ” .  It is generally believed that on large length scales, L >> 6, the infinite cluster 
which appears for p > pc is homogeneous. This homogeneity is believed to disappear 
for shorter length scales, L < 6. For these scales, the infinite cluster is argued to be 
self-similar, with a typical fractal dimensionality D (Kapitulnik et a1 1983, Stanley 
1984). Much of the current interest in such systems concentrates on the influence of 
the geometrical structure on the physical properties in the vicinity of the percolation 
threshold pc (Alexander 1983a, Gefen et a1 1983, 1984, Orbach 1984, Webman 1984). 

Various goemetrical models have been proposed to imitate the infinite incipient 
cluster at the percolation threshold, and it is of great interest to understand the effects 
of these different geometries on the band structures of elastic vibration at the percolation 
threshold. Three extreme models for the backbone of the infinite cluster have been 
proposed, i.e. the family of Sierpinski gaskets, the ‘links and nodes’ model and the 
‘links-nodes-blobs’ model (Coniglio 1982, Aharony et a1 1984). Mandelbrot (1984) 
has also presented a fractal squig model for percolation clusters in the plane to have 
the geometric and topological properties very close to the infinite cluster. It has been 
recently proposed that linear physical problems (classical conduction, diffusion and 
vibration) on percolation clusters at the threshold are governed by the three dimensions 
d (Euclidean dimension), D (fractal dimension of percolating cluster) and d,  (spectral 
dimension), and the spectral dimension is independent of the spatial dimension 
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(Alexander and Orbach 1982). However, in spite of the interest in the spectral 
dimension, the band structure does not appear in the literature, except for the Sierpinski 
gaskets (Alexander 1983b, Domany et a1 1983, Rammal 1983). Though the percolating 
network is an ideal system to study the crossover between phonon and fracton, regular 
models do not appear to mimic the geometric texture and it is not easy to analyse the 
spectrum (Orbach 1984). 

In this letter, we present a two-dimensional regular model for percolating networks 
just above percolation threshold. We study the scaling of the low-frequency density 
of states for elastic vibrations and the band structures of allowed regions and gaps in 
the spectrum. The regular model is self-similar (fractal) on length scales smaller than 
the connectedness length tN = 5N, but becomes a homogeneous square lattice on large 
length scales. To mimic the geometric texture of percolating networks just above 
percolation threshold, our model has the characteristic properties that the infinite 
cluster is composed of a backbone through which electrical current flows and dangling 
bonds hanging on it. The backbone consists of multiply connected 'blobs' joined by 
singly connected 'links'. 

The regular model is constructed by the following. Assume first a system of 
identical masses M placed at the sites of the square lattice, and connected by springs 
of strength K. Secondly remove masses M placed at the positions ( i ,  j) which satisfy 
the following relations: 

cos (2~ i /5"  + 8 ~ / 5 )  = cos(21rj/5" + 8 ~ 1 5 )  = 1 

cos (2~ i /5"  + 6 ~ / 5 )  = C O S ( ~ T ~ / ~ ~  $ 6 ~ 1 5 )  = 1, 

cos(21ri/5" + 4 ~ / 5 )  = cos(2rrj/5" + 4 ~ / 5 )  = 1, 

cos (2~ i /5"  + 2 ~ / 5 )  = c o s ( ~ T ~ / ~ "  + 2 ~ / 5 )  = 1, 

cos (2~ i /5"  + 2 ~ / 5 )  = cos(21rj/5" + 8 ~ / 5 )  = 1, 

cos(2ri/5" + 4 ~ / 5 )  = cos(21rj/5"+6~/5) = 1, 

cos(2.rri/5" 1 6 ~ 1 5 )  = cos(2nj/5" + 4 ~ / 5 )  = 1, 

c o s ( 2 ~ i / 5 " + 8 ~ / 5 ) = c o s ( 2 ~ j / 5 " + 2 1 r / 5 )  = 1 

Two construction stages of our regular model are shown by figure 1. The crosses 
represent the sites where the masses are removed at the first stage, satisfying (1) with 
n = m = 1. The triangular sites represent the masses removed at the second stage, 
satisfying (1) with n = in = 2. The system obtained appears to be a superlattice made 
by nodes separated by a distance of tN = 5N, connected by quasi-linear links. Within 
this model, the correlation between two sites at distance r < tN is via a single link, but 
this link is a branching curve. The curve is identified as one of the branching Koch 
curves (Gefen et al 1983). We obtain the square lattice with self-similar structures on 
length scales smaller than the connectedness length tN = 5N. The concentration p of 
masses A4 is given by 

n , m = 1 , 2  , . . . ,  N. 
(1) 

p=l-[8/25+8/(25) '+.  * *+8/(25)N].  (2) 

When N is infinitely large, the concentration p approaches the critical value p c  = 3 and 
the connectedness length diverges, 5 - ( p  -pJ1''. Our model with infinitely large N 
appears to be similar to percolating networks just above percolation threshold. 
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x x  x 

Figure 1. Two construction stages of the regular model. Crosses and triangles denote 
respectively the sites removed at the first and second stages according to the rule of equations 
(1). 

The quasi-linear fractal lattice is constructed by hierarchical extrapolation. The 
generator of the fractal lattice is shown in figure 2(a). The fractal dimension D is 
given by D = log 23/log 5 and corresponds to that of the infinite cluster in our model. 
The infinite cluster is composed of a backbone through which electrical current flows 
and dangling bonds hanging on it. The fractal lattice of its backbone in our model is 
shown by figure 2(b). The fractal dimension Db is given by @,=log l l / log 5.  The 
exponent, describing the power-law dependence on scale length L of the conductivity 

Figure 2. Generators of the fractals for the infinite cluster and its backbone in our regular 
model. (a) and ( b )  correspond respectively to the infinite cluster and its backbone. 
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L-'/", is given by 

t /  v = log R/log b = log(23/5)/log 5 (3) 

where we define R by assuming that for large n the two-point resistance of an order-n 
lattice of unit resistors is XR". The value for t /  v is extremely close to that predicted 
by the 

Here, we compare our regular model with the fractal squig model suggested by 
Mandelbrot (1984). The fractal squig model possesses the geometric and topological 
properties very close to the infinite cluster at the percolation threshold but does not 
describe the approach towards the threshold. Our regular model has the geometric 
and topological properties similar to the infinite cluster and can describe the approach 
towards the threshold according as N increases. One may study the crossover between 
phonon and fracton by the regular model. 

We study elastic vibration on the regular fractal model. Let CT = M w 2 / K  = w ' / w ;  
denote the reduced squared frequency and { V, e'"'} the eigenstate associated with a 
mode of frequency W .  The set of equations of motion for sites i is given by 

hypothesis of Alexander and Orbach. 

a U, = c ( U, - v,) (4) 
j 

where j denotes a neighbouring site of i. 
The self-similarity of the lattice on length scales smaller than the connectedness 

length tN = 5 N  leads to a natural decimation procedure (Kadanoff and Houghton 
1975, Goncalves da Silva and Koiller 1981). The free boundary conditions at the edges 
of the dangling bonds introduce a complication, because three types of sites are not 
equivalent with different numbers of dangling bonds. Three parameters are involved 
in the decimation procedure because of different types of renormalised sites. The idea 
involves eliminating the lowest scale amplitudes in equation (4). This procedure leads 
to a reduced set of equations describing the same physics on a lattice scaled down by 
a factor b = 5 .  This exact renormalisation leads to three renormalised frequencies 
(three parameter renormalisation group). In the following we shall illustrate this 
procedure. The decimation technique is schematically indicated in figure 3. The sites 

I 
X-X- 

I l l  
I 

x-x-x 

Figure 3. Schematic representation of the decimation technique for a part of the fractal 
lattice. The sites denoted by crosses on the left-hand lattice are eliminated, producing the 
right-hand renormalised lattice. 
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represented by crosses on the left-hand lattice are eliminated, producing the renor- 
malised right-hand lattice. We classify the renormalised sites into three types of sites: 
(a) the sites with three dangling bonds, (b) the sites with two dangling bonds, and (c) 
the sites with no dangling bonds (see figure 4). We shall consider the equation of 
motion for the sites of type a (see figure 3): 

a,U, = 4U1 - U, - 112- U3 - U*. ( 5 )  

a b C 

Figure 4. Classification of the renormalised sites which are indicated by full circles. (a) 
The sites with three dangling bonds, (b) the sites with two dangling bonds, and (c)'the 
sites with no dangling bonds. 

Eliminating {u i } ,  one obtains a new equation for { Ui}:  

.:U, = U, - U,. 
This relation can be cast in the form of the first equations with the renormalisation: 

(7) 

Similarly, one can obtain the recursion relations of renormalised frequencies for sites 
of types b and c: 

(8) 

(9) 

a:= (aC-4)det Cldet E -det Dldet E -3(det B det C)/(det A det E )+  1. 

ab= (a,-4) det Cldet E -2 det Dldet E -2(det B det C)/(det A det E ) + 2 ,  

a: = (a, - 4) det C/det E - 4 det Dldet E + 4. 

At low frequency, the recursion relations (7), (8) and (9) yield the common fixed point 
a* = 0, implying the existence of a uniform mode at zero frequency. In the vicinity 
of this fixed point, we have 

The matrix in equation (10) has eigenvalues A = 0, y, y. Following the scaling method 
by Rammal and Toulouse (1983), the spectral dimension is given 

d,  = 2 0  log bllog Amax = 2 log 23/log y. (11) 
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4 
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N 

2 

This result agrees with the value derived by assuming Einstein's relation: d , =  
2 0 / ( 2 +  t /  v - d + D) .  Table 1 lists the geometric and physical properties, determined 
analytically by our regular-fractal model. 

I/ 1111 I I 1  Ill I 111 I II 1 I1 I I  

111 111 I I111 II I 111 I 11111 111 

II 111 I 111 111 111 I 1111 I 

II 111 I 111 II 111 I 111 lw 

I I  = D I  m = m  

I I I 

Table 1. List of the geometric and physical properties determined analytically by our 
regular model. 

2 1 log 23/log 5 log 1 l/log 5 log ?/log 5 2 log 23/lOg 
J I 

On the other hand, the regular model becomes a homogeneous square lattice on 
large length scales, L >> 5. The density of vibrational states in the regime can be written 
as 

p ( w )  - w d - l .  (12) 
We study the band structure of allowed regions and gaps of spectrum to examine 
whether or not the crossover between the long wavelength phonon and the short-length- 
scale fracton vibrational excitations happen in our regular model. The regular model 
is self-similar (fractal) on length scales smaller than the connectedness length eN = 5N, 
but becomes a homogeneous square lattice on large length scales. The renormalised 
lattice obtained after the Nth  renormalisation appears to be the ordered square lattice 
on which elastic vibrations are governed by the equations of motion with the renor- 
malised frequency a,". Allowed regions of the spectrum are therefore given by 

Osa,"S8, (13 )  
where a," indicates the renormalised frequency obtained after the Nth  substitution 
of equations (7), (8) and (9) into themselves. Figure 5 shows allowed regions of the 
spectrum as a function N, obtained by numerical calculations of the relation (13) with 
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N times iterations of recursion relations (7) ,  (8) and (9). Figure 6 ,  a magnification of 
the part of figure 5 near the zero frequency, shows the allowed frequency regions. 
They are obtained by successively expanding the frequency scale by a factor In 
spite of increasing magnification of the frequency scale in the vicinity of the zero 
frequency, similar structures appear which reveal a self-similarity to be a typical Cantor 
set. As N + 03, what we see is an infinite number of very narrow bands which have 
self-similar structures. We rederive the scaling form for the frequency in the vicinity 
of the zero frequency. Notice that, for large N, the allowed regions get narrower and 
narrower. The continuous spectrum with the very narrow bandwidth at zero frequency 
corresponds to the long-wavelength phonon modes. This bandwidth scales as 

This corresponds to the crossover frequency wc0. The band structure in our model 
shows phonon modes for o c U,, and fraction modes for o >> U,,. 

I I 1 
0 0 5  1 0  1 5 x 1 0 - 6  

w 2 /  w i  

Figure 6. The allowed frequency regions. A magnification of the part of figure 5 near the 
zero frequency ( N  = 5) .  They are respectively obtained by successively expanding the 
reduced squared frequency scale by a factor y. 

In conclusion, we summarise that microscopically self-similar (fractal) structures 
lead to the scaling of the low-frequency density of states via recursion relations (10) 
and on the other hand the property of the macroscopically homogeneous square lattice 
leads to the band structures of the allowed frequency regions via relation (13) with 
the recursion relations (7), (8) and (9). 
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